Filomat 29:4 (2015), 667–671 DOI 10.2298/FIL1504667S

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On Weakly Hurewicz Spaces

Yan-Kui Song^a, Rui Li^b

^a Institute of Mathematics, School of Mathematical Science, Nanjing Normal University, Nanjing 210023, P.R. China ^bDepartment of Applied Mathematics, Shanghai Finance University, Shanghai 201209, P.R.China

Abstract. A space *X* is *weakly Hurewicz* if for each sequence ($\mathcal{U}_n : n \in \mathbb{N}$) of open covers of *X*, there are a dense subset $Y \subseteq X$ and finite subfamilies $\mathcal{V}_n \subseteq \mathcal{U}_n (n \in \mathbb{N})$ such that for every point of *Y* is contained in $\bigcup \mathcal{V}_n$ for all but finitely many *n*. In this paper, we investigate the relationship between Hurewicz spaces and weakly Hurewicz spaces, and also study topological properties of weakly Hurewicz spaces.

1. Introduction

By a space, we mean a topological space. In 1925, Hurewicz [2] (see also [3, 5]) defined a space *X* to be *Hurewicz* if for each sequence ($\mathcal{U}_n : n \in \mathbb{N}$) of open covers of *X* there exists a sequence ($\mathcal{V}_n : n \in \mathbb{N}$) such that for each *n*, \mathcal{V}_n is a finite subset of \mathcal{U}_n and for each $x \in X, x \in \bigcup \mathcal{V}_n$ for all but finitely many *n*. Clearly every Hurewicz space is Lindelöf. As a generalization of Hurewicz spaces, the authors [7] defined a space *X* to be *almost Hurewicz* if for each sequence ($\mathcal{U}_n : n \in \mathbb{N}$) of open covers of *X* there exists a sequence ($\mathcal{V}_n : n \in \mathbb{N}$) such that for each $n \in \mathbb{N}$, \mathcal{V}_n is a finite subset of \mathcal{U}_n and for each $x \in X, x \in \bigcup \{\overline{V} : V \in \mathcal{V}_n\}$ for all but finitely many *n*. Kočinac [4] defined (see also [6]) a space *X* to be *weakly Hurewicz* if for each sequence ($\mathcal{U}_n : n \in \mathbb{N}$) of open covers of *X*, there are a dense subset $Y \subseteq X$ and a sequence ($\mathcal{V}_n : n \in \mathbb{N}$) such that for each *n*, \mathcal{V}_n is a finite subset of \mathcal{U}_n and for each *x* e to be *weakly Hurewicz* if for each sequence ($\mathcal{U}_n : n \in \mathbb{N}$) of open covers of *X*. There are a dense subset $Y \subseteq X$ and a sequence ($\mathcal{V}_n : n \in \mathbb{N}$) such that for each *n*, \mathcal{V}_n is a finite subset of \mathcal{U}_n and for each $y \in Y, y \in \bigcup \mathcal{V}_n$ for all but finitely many *n*. From the definitions above, we can easily see that the Hurewicz property implies the almost Hurewicz property and the weak Hurewicz property. The authors [7] showed that every regular almost Hurewicz space is Hurewicz and gave an example that there exists a Urysohn almost Hurewicz space that is not Hurewicz. On the study of Hurewicz and almost Hurewicz spaces, the readers can see the references [2, 3, 5, 6, 7]. The purpose of this paper is to investigate the relationship between Hurewicz spaces.

Throughout this paper, the cardinality of a set *A* is denoted by |A|. Let ω be the first infinite cardinal and ω_1 the first uncountable cardinal. As usual, a cardinal is the initial ordinal and an ordinal is the set of smaller ordinals. Every cardinal is often viewed as a space with the usual order topology. Other terms and symbols that we do not define follow [1].

Keywords. Selection principles, Hurewicz spaces, almost Hurewicz spaces, weakly Hurewicz spaces

²⁰¹⁰ Mathematics Subject Classification. Primary 54D20

Received: 05 October 2013; Revised: 06 November 2013, 13 November 2013; Accepted: 13 November 2013

Communicated by Eberhard Malkowsky

The first author acknowledges the support from NSFC Project 11271036

Email addresses: songyankui@njnu.edu.cn (Yan-Kui Song), lir@shfc.edu.cn (Rui Li)

2. Properties of Weakly Hurewicz Spaces

In this section, first we give an example showing that Tychonoff weakly Hurewicz spaces need not be Hurewicz.

Lemma 2.1. If a space X has a σ -compact dense subset, then X is weakly Hurewicz.

Proof. Let $D = \bigcup_{n \in \mathbb{N}} D_n$ be a σ -compact dense subset of X, where each D_n is a compact subset of X. Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of open covers of X and let us consider the dense subset D of X. For each $n \in \mathbb{N}$, the set $\bigcup_{m \leq n} D_m$ is compact, there exists a finite subset \mathcal{V}_n of \mathcal{U}_n such that $\bigcup_{m \leq n} D_m \subseteq \bigcup \mathcal{V}_n$. Thus we get a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, \mathcal{V}_n is a finite subset of \mathcal{U}_n and for each $x \in D$, there exists an $n_0 \in \mathbb{N}$ such that $x \in D_{n_0}$, thus $x \in \bigcup \mathcal{V}_n$ for all $n \geq n_0$, which shows that X is weakly Hurewicz. \Box

Since every separable space has a countable dense subset, thus we have the following Corollary by Lemma 2.1

Corollary 2.2. *Let X be a separable space. Then X is weakly Hurewicz.*

For a Tychonoff space *X*, let βX denote the Čech-Stone compactification of *X*.

Example 2.3. There exists a Tychonoff weakly Hurewicz space X that is not Hurewicz.

Proof. Let *D* be the discrete space of cardinality ω_1 , let

$$X = (\beta D \times (\omega + 1)) \setminus ((\beta D \setminus D) \times \{\omega\})$$

be the subspace of the product of βD and $\omega + 1$. Then *X* is weakly Hurewicz by Lemma 2.1, since $\beta D \times \omega$ is a σ -compact dense subset of *X*. Since $D \times \{\omega\}$ is an uncountable discrete closed subset of *X*, *X* is not Lindelöf. Thus *X* is not Hurewicz, since every Hurewicz space is Lindelöf, which completes the proof.

From Example 2.3, it is not difficult to see that the closed subset of a Tychonoff weakly Hurewicz space need not be weakly Hurewicz, since $D \times \{\omega\}$ is an uncountable discrete closed subset of *X*. In the following, we give a positive result. We omit the proof of the following lemma which can be easily proved. A subset *B* of a space *X* is *regular closed* if $B = \overline{B^0}$.

Lemma 2.4. Let *F* be a regular closed subset of a space *X* and *Y* a dense subset of *X*. Then $Y \cap F$ is a dense subset of *F*.

Theorem 2.5. *Every regular closed subset of a weakly Hurewicz space is weakly Hurewicz.*

Proof. Let *X* be a weakly Hurewicz space and *F* be a regular closed subset of *X*. Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of open covers of *F*. For each $n \in \mathbb{N}$ and each $U \in \mathcal{U}_n$, there exists an open subset $V_{(n,U)}$ of *X* such that $V_{(n,U)} \cap F = U$. For each $n \in \mathbb{N}$, let $\mathcal{U}'_n = \{V_{(n,U)} : U \in \mathcal{U}_n\} \cup \{X \setminus F\}, \mathcal{U}'_n$ is an open cover of *X*. Then $(\mathcal{U}'_n : n \in \mathbb{N})$ is a sequence of open covers of *X*. There exist a dense subset *Y* of *X* and a sequence $(\mathcal{V}'_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}, \mathcal{V}'_n$ is a finite subset of \mathcal{U}'_n and for every point of *Y* is contained in $\bigcup \mathcal{V}'_n$ for all but finitely many *n*, since *X* is weakly Hurewicz. For each $n \in \mathbb{N}$, let $\mathcal{W}_n = \mathcal{V}'_n \setminus \{X \setminus F\}$. For each $n \in \mathbb{N}$, let $\mathcal{V}_n = \{W \cap F : W \in \mathcal{W}_n\}$. Then \mathcal{V}_n is a finite subset \mathcal{U}_n . By Lemma 2.4, the set $Y \cap F$ is a dense subset of *F*. For each $y \in Y \cap F$ and for each $n \in \mathbb{N}$, if $y \in \bigcup \mathcal{V}'_n$, then $y \in \bigcup \mathcal{W}_n$, hence $y \in \bigcup \mathcal{V}_n$. This shows that for $y \in Y \cap F$, $y \in \bigcup \mathcal{V}_n$ for all but finitely many *n*, which completes the proof. \Box

Corollary 2.6. If X is a weakly Hurewicz space, then every open and closed subset of X is weakly Hurewicz.

Theorem 2.7. Every Tychonoff space X can be represented as a closed G_{δ} subspace in a Tychonoff weakly Hurewicz space.

Proof. Let *X* be a Tychonoff space and let

 $R(X) = (\beta X \times (\omega + 1)) \setminus ((\beta X \setminus X) \times \{\omega\})$

be the subspace of the product of βX and $\omega + 1$.

Thus *X* can be represented as a closed G_{δ} subspace in R(X) by the definition of the topology R(X), since *X* is homeomorphic to $X \times \{\omega\}$ and $X \times \{\omega\}$ is a closed G_{δ} subset of R(X).

Similarly to the proof that *X* in Example 2.3 is weakly Hurewicz, it is not difficult to show that R(X) is weakly Hurewicz. \Box

Since a continuous image of a Hurewicz space is Hurewicz, similarly we have the following result.

Theorem 2.8. A continuous image of a weakly Hurewicz space is weakly Hurewicz.

Proof. Let *X* be a weakly Hurewicz space, $f : X \to Y$ be continuous and $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of open covers of *Y*. For each $n \in \mathbb{N}$, let $\mathcal{U}'_n = \{f^{-1}(U) : U \in \mathcal{U}_n\}$. Then $(\mathcal{U}'_n : n \in \mathbb{N})$ is a sequence of open covers of *X*. There are a dense subset *D* of *X* and a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, \mathcal{V}_n is a finite subset of \mathcal{U}_n and for each $x \in D$, $x \in \bigcup \{f^{-1}(U) : U \in \mathcal{V}_n\}$ for all but finitely many *n*, since *X* is weakly Hurewicz. Thus the dense subset f(D) of *Y* and the sequence $(\mathcal{V}_n : n \in \mathbb{N})$ witness for $(\mathcal{U}_n : n \in \mathbb{N})$ that *Y* is weakly Hurewicz. Indeed, let $y \in f(D)$, there exists $x \in D$ such that f(x) = y. Then $x \in \bigcup \{f^{-1}(U) : U \in \mathcal{V}_n\}$ for all but finitely *n*. Thus $y = f(x) \in \cup \{U : U \in \mathcal{V}_n\}$. This shows that $y \in \bigcup \{U : U \in \mathcal{V}_n\}$ for all but finitely *n*, which completes the proof. \Box

Next we turn to consider preimages. To show that the preimage of a weakly Hurewicz space under a closed 2-to-1 continuous map need not be weakly Hurewicz. We use the Alexandorff duplicate A(X) of a space X. The underlying set of A(X) is $X \times \{0, 1\}$; each point of $X \times \{1\}$ is isolated and a basic neighborhood of a point $\langle x, 0 \rangle \in X \times \{0\}$ is of the form $(U \times \{0\}) \cup ((U \times \{1\}) \setminus \{\langle x, 1 \rangle\})$, where U is a neighborhood of x in X.

Example 2.9. There exists a closed 2-to-1 continuous map $f : A(X) \rightarrow X$ such that X is a Tychonoff weakly Hurewicz space, but A(X) is not weakly Hurewicz.

Proof. Let *X* be the space *X* of Example 2.3. Then *X* is weakly Hurewicz and has an infinite discrete closed subset $A = \{\langle d_{\alpha}, \omega \rangle : \alpha < \omega_1\}$. Hence $A \times \{1\}$ is not weakly Hurewicz, since $A \times \{1\}$ is an uncountable infinite discrete, open and closed subset in A(X). Thus the Alexandroff duplicate A(X) of *X* is not weakly Hurewicz by Corollary 2.6. Let $f : A(X) \to X$ be the projection. Then *f* is a closed 2-to-1 continuous map, which completes the proof. \Box

In the following, we give a positive result.

Theorem 2.10. If $f : X \to Y$ is an open and perfect continuous mapping and Y is a weakly Hurewicz space, then X is weakly Hurewicz.

Proof. Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of open covers of *X*. Then for each $y \in Y$ and each $n \in \mathbb{N}$, there is a finite subfamily \mathcal{U}_{n_y} of \mathcal{U}_n such that

$$f^{-1}(y) \subseteq \bigcup \mathcal{U}_{n_y}.$$

Let $U_{n_y} = \bigcup \mathcal{U}_{n_y}$. Then $V_{n_y} = Y \setminus f(X \setminus U_{n_y})$ is an open neighborhood of *y*, since *f* is closed.

For each $n \in \mathbb{N}$, let $\mathcal{V}_n = \{V_{n_y} : y \in Y\}$. Then \mathcal{V}_n is an open cover of Y. Thus $(\mathcal{V}_n : n \in \mathbb{N})$ is a sequence of open covers of Y. There are a dense subset D of Y and a sequence $(\mathcal{V}'_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, \mathcal{V}'_n is a finite subset of \mathcal{V}_n and for each $y \in D$, $y \in \bigcup \{V : V \in \mathcal{V}'_n\}$ for all but finitely many n, since Y is weakly Hurewicz. Without loss of generality, we may assume that $\mathcal{V}'_n = \{V_{n_{y_i}} : i \leq n'\}$ for each $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, let $\mathcal{U}'_n = \bigcup_{i \leq n'} \mathcal{U}_{n_{y_i}}$. Then \mathcal{U}'_n is a finite subset of \mathcal{U}_n . Since f is an open mapping, thus $f^{-1}(D)$ is a dense subset of X. Therefore the subset $f^{-1}(D)$ and the sequence $(\mathcal{U}'_n : n \in \mathbb{N})$ witnesses for $(\mathcal{U}_n : n \in \mathbb{N})$ that *X* is weakly Hurewicz. Indeed, let $x \in f^{-1}(D)$, $f(x) \in D$. Then $f(x) \in \bigcup \{V_{n_{y_i}} : i \leq n'\}$ for all but finitely many *n*. For $n \in \mathbb{N}$, if $f(x) \in \bigcup \{V_{n_{y_i}} : i \leq n'\}$, then there exists some $i \leq n'$ such that $f(x) \in V_{n_{y_i}}$. Hence

$$x \in f^{-1}(f(x)) \in f^{-1}(V_{n_{y_i}}) \subseteq U_{n_{y_i}} \subseteq \bigcup \mathcal{U}_{n_{y_i}}.$$

Therefore $x \in \bigcup \{U : U \in \mathcal{U}'_n\}$. This shows that $x \in \bigcup \{U : U \in \mathcal{U}'_n\}$ for all but finitely *n*, which completes the proof. \Box

It is well-known that the product of a Hurewicz space and a compact space is Hurewicz. For weakly Hurewicz spaces, we have the similar result by Theorem 2.10.

Corollary 2.11. If X is a weakly Hurewicz space and Y is a compact space, then $X \times Y$ is weakly Hurewicz.

Lemma 2.12. The weakly Hurewicz property is closed under countable union.

Proof. Let $X = \bigcup \{X_k : k \in \mathbb{N}\}$, where each X_k is weakly Hurewicz. Let $\{\mathcal{U}_n : n \in \mathbb{N}\}$ be a sequence of open covers of X. For each $k \in \mathbb{N}$, let us consider the sequence $\{\mathcal{U}_n : n \ge k\}$. For each $k \in \mathbb{N}$, since X_k is weakly Hurewicz, there are a dense subset D_k of X_k and a sequence $\{\mathcal{V}_{n,k} : n \ge k\}$ such that for each $n \ge k$, $\mathcal{V}_{n,k}$ is a finite subset of \mathcal{U}_n and for each $x \in D_k$, $x \in \bigcup \mathcal{V}_{n,k}$ for all but finitely many $n \ge k$. Let $D = \bigcup_{k \in \mathbb{N}} D_k$. Then D is a dense subset of X. For each $n \in \mathbb{N}$, let $\bigcup \{\mathcal{V}_{n,j} : j \le n\}$. Then each \mathcal{V}_n is a finite subset of \mathcal{U}_n . The dense subset D of X and the sequence $(\mathcal{V}_n : n \in \mathbb{N})$ witness that X is weakly Hurewicz. If fact, for each $x \in D$, there exists some $k \in \mathbb{N}$ such that $x \in D_k$, thus $x \in \bigcup \mathcal{V}_n$ for all but finitely many n > k. which completes the proof. \Box

We have the following result by Lemma 2.12 and Corollary 2.11.

Corollary 2.13. If X is a weakly Hurewicz space and Y is a σ -compact space, then X × Y is weakly Hurewicz.

Theorem 2.14. *The following are equivalent for a space X.*

(a) X is Hurewicz;

(b) A(X) is Hurewicz;

(c) A(X) is weakly Hurewicz.

Proof. (*a*) \rightarrow (*b*). We show that A(X) is Hurewicz. To this end, let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of open covers of A(X). For each $n \in \mathbb{N}$ and each $x \in X$, choose an open neighborhood $W_{n_x} = (V_{n_x} \times \{0,1\}) \setminus \{\langle x,1 \rangle\}$ of $\langle x,0 \rangle$ satisfying that there exists some $U_{n_x} \in \mathcal{U}_n$ such that $W_{n_x} \subseteq U_{n_x}$, where V_{n_x} is an open neighborhood of x in X. For each $n \in \mathbb{N}$, let $\mathcal{V}_n = \{V_{n_x} : x \in X\}$. Then \mathcal{V}_n is an open cover of X. Thus $(\mathcal{V}_n : n \in \mathbb{N})$ is a sequence of open covers of X, there exists a sequence $(E_n : n \in \mathbb{N})$ of finite subsets of X such that $(\{V_{n_x} : x \in E_n\})$ witnesses the Hurewicz property of X. For each $n \in \mathbb{N}$ and each $x \in E_1 \cup E_2 \cup \cdots \cup E_n$, pick $U'_{n_x} \in \mathcal{U}_n$ such that $\langle x, 1 \rangle \in U'_{n_x}$. For each $n \in \mathbb{N}$, let

$$\mathcal{U}'_n = \{U_{n_x} : x \in E_n\} \left(\bigcup \{U'_{n_x} : x \in E_1 \cup E_2 \cup \cdots \cup E_n\} \right)$$

Then \mathcal{U}'_n is a finite subset of \mathcal{U}_n . Thus the sequence $(\mathcal{U}'_n : n \in \mathbb{N})$ witnesses for $(\mathcal{U}_n : n \in \mathbb{N})$ that A(X) is Hurewicz.

 $(b) \rightarrow (c)$. It is trivial.

(*c*) → (*a*). For each $n \in \mathbb{N}$, let $\mathcal{U}_n = \{U_x^n : x \in X\}$ be an open cover of *X*, where U_x^n is an open neighborhood of *x*. Applying the weak Hurewicz property of *A*(*X*) to the open covers of *A*(*X*) below

$$\{(U_x^n \times \{0,1\}) \setminus \{\langle x,1 \rangle\} : x \in X\} \cup \{\{\langle x,1 \rangle\} : x \in X\},\$$

we have a dense subset D in A(X) and a sequence $(F_n : n \in \mathbb{N})$ of finite sets in X such that D and $\{(U_x^n \times \{0,1\}) \setminus \{\langle x,1 \rangle\} : x \in F_n\} \cup \{\{\langle x,1 \rangle\} : x \in F_n\}$ witness the weak Hurewicz property of A(X) for the given cover above. Let $\mathcal{V}_n = \{U_x^n : x \in F_n\}$. For each $n \in \mathbb{N}$, take a finite subfamily $\mathcal{W}_n \subseteq \mathcal{U}_n$ satisfying $F_1 \cup F_2 \cup \cdots \cup F_n \subseteq \bigcup \mathcal{W}_n$. If $x \in \bigcup_{n \in \mathbb{N}} F_n$, then $x \in \bigcup \mathcal{W}_n$ for all but finitely many $n \in \mathbb{N}$. If $x \in X \setminus \bigcup_{n \in \mathbb{N}} F_n$, then by $\langle x, 1 \rangle \in D$ we have $x \in \bigcup \mathcal{V}_n$ for all but finitely many $n \in \mathbb{N}$. \Box

Remark 2.15. However the Alexandorff duplicate A(X) of a Tychonoff weakly Hurewicz space X need not be weakly Hurewicz. For example, let P be the space of irrationals, then it is a Lindelöf weakly Hurewicz space such that A(P) is not weakly Hurewicz.

Acknowledgment 1. The authors would like to thank the referee for his careful reading of the paper and a number of valuable suggestions which led to improvements on several places.

References

- [1] R. Engelking General Topology, Revised and completed edition, Heldermann Verlag Berlin, 1989.
- [2] W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925), 401-421.
- [3] W. Hurewicz, Über Folgen stetiger Funktionen, Fund. Math. 8 (1927), 193-204.
- [4] Lj.D.R. Kočinac, The Pixley-Roy topology and selection principles, Questions Answers Gen. Topology. 19 (2001), 219-225.
- [5] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996), 31-62.
- [6] M. Sakai, The weak Hurewicz property of Pixley-Roy hyperspaces, Topology Appl. 160 (2013), 2531-2537.
- [7] Y.-K. Song and R. Li, The almost Hurewicz spaces, Questions Answers Gen. Topology. 31 (2013), 131–136.